Comparing individual-based approaches to modelling the self-organization of multicellular tissues

نویسندگان

  • James M. Osborne
  • Alexander G. Fletcher
  • Joe Pitt-Francis
  • Philip K. Maini
  • David Gavaghan
چکیده

The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual cell-based models of the spatial-temporal organization of multicellular systems--achievements and limitations.

Computational approaches of multicellular assemblies have reached a stage where they may contribute to unveil the processes that underlie the organization of tissues and multicellular aggregates. In this article, we briefly review and present some new results on a number of 3D lattice free individual cell-based mathematical models of epithelial cell populations. The models we consider here are ...

متن کامل

Directing three-dimensional multicellular morphogenesis by self-organization of vascular mesenchymal cells in hyaluronic acid hydrogels

BACKGROUND Physical scaffolds are useful for supporting cells to form three-dimensional (3D) tissue. However, it is non-trivial to develop a scheme that can robustly guide cells to self-organize into a tissue with the desired 3D spatial structures. To achieve this goal, the rational regulation of cellular self-organization in 3D extracellular matrix (ECM) such as hydrogel is needed. RESULTS I...

متن کامل

Comparing Discriminant Analysis, Ecological Niche Factor Analysis and Logistic Regression Methods for Geographic Distribution Modelling of Eurotia ceratoides (L.) C. A. Mey

Eurotia ceratoides (L.) C. A. Mey is an important plant species in semi-arid landsin Iran. New approaches are required to determine the distribution of this plant species. Forthis reason, geographical distributions of Eurotia ceratoides were assessed using threedifferent models including: Multiple Discriminant Analysis (MDA), Ecological Niche FactorAnalysis (ENFA) and Logistic Regression (LR). ...

متن کامل

GAME OF COORDINATION FOR BACTERIAL PATTERN FORMATION: A FINITE AUTOMATA MODELLING

In this paper, we use game theory to describe the emergence of self-organization and consequent pattern formation through communicative cooperation in Bacillus subtilis colonies. The emergence of cooperative regime is modelled as an n-player Assurance game, with the bacterial colonies as individual players. The game is played iteratively through cooperative communication, and mediated by exchan...

متن کامل

The Study of Variation of Photon Intensity Inside Biological Phantom by Green Theorem

The Image reconstruction is an important problem in optical tomography. The process of the image processing requires the study of photon migration in biological tissue. There are several approaches to study and simulate propagation of photons in biological tissues. These approaches are categorized into stochastic and analytical groups. The Monte Carlo method as a stochastic method is widely use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017